
AU4J
Application Understanding for Java

From the eighties of the last century, Legacy Applications have always been a serious issue of the IT. A

decade ago, “Legacy” meant COBOL or something similar to COBOL, as the Natural language of Software

AG, or the RPG of IBM. In the last ten years, however, the mainstream technology has changed

dramatically, also affected the Java community. The Cloud has rendered some aspects of Java EE

useless, and eventually Java EE was removed from Oracle Java portfolio. Microservices are going to

replace monolithic servers deployed in heavyweight containers.

This encouraged us to extend our existing Application Understanding technology to the Java world, and

the result of that effort is the AU4J product.

Wherever you want to go with your legacy code, either redevelop it from scratch, or continue the

brownfield development, or just decide between the above two, you will need to understand the

business logic the application embodies. Extracting the business logic from an existing code base is not

an easy task, however. Developers have to examine hundred thousand or even million lines of code.

Application Understanding provides a brand-new approach to this process1, to extract the business logic

from the application code. Code analysis traditionally goes top-down, starting from the entry point(s),

and traversing the directed graph of the control flow. Things quickly become unclear, get out of hand,

because complexity grows exponentially on the way. But Application Understanding takes the opposite

direction. It detects the particular points in the code, where a piece of persistent data is created (called

output endpoint’s). From there, the traverse goes backward, gathering the code fragments that are

involved in creation of the persistent data. The result is the pure business logic, excluded any other

aspects of the architecture, e.g. logging or management.

As a process, the business rule extraction is somehow similar to angiography, a medical imaging

technique used to visualize the blood vessels2. Developer inject paint to one or more endpoints of the

system, and look at what has become colored.

The AU4J tool is integrated with the IDE (actually a JetBrains IntelliJ IDEA plugin is available), so

developers can process the result list in their familiar environment.

In addition to the business rule extraction, the AU4J tool (which is a Web application) provides several

functions to support application maintenance and brownfield development.

• Module hierarchy tool – Shows the module hierarchy of the system as an expandable tree.

Displays module statistics as well.

• Entities tool – Lists the persistent entities of the application. On click it reveals the structure of

an entity. If a property is a reference, on click it shows it’s structure, too.

• Paint tool – extracts the business logic by exploring the codes and datasets that are connected

to the selected endpoints

1 cf. Business Rule Extraction in Application Modernization Projects © Copyright 2015, Don Estes
2 in Wikipedia https://en.wikipedia.org/wiki/Angiography

• Dead code detection – Lists the unused methods in the application . The algorithm is recursive:

dead code is uninvoked or only invoked by dead codes.

• Cyclomatic complexity3 – Displays total and average complexity4 of the elements of the

module–class–method hierarchy. The tool helps resource planning for testing, and points to

methods that are difficult to maintain in the code.

• Find SQL tool – identifies the line(s) in the code that result in the specified SQL or JPQL query.

• Queries tool – Lists the named, native and inline queries within the code. On click it shows the

formatted source of a query both in JPQL and SQL language.

• Impact analysis – AU4J is integrated with the version management system that manages the

application’s code. If you enter a commit identifier, it returns the list of use cases and interface

functions affected. The tool reduces the resource requirements for regression testing , and

allows you to evaluate the security impact of the change.

• Vocabulary analysis – Collects the words used as names in the application (and the

decomposition of the compound names). Enables clustering of application concepts. You can go

through all usages of a particular word. It helps to standardize the language of the system, and

develop a common vocabulary for the domain experts and the developers. Allows you to match

phrases (in mixed language codes).

• Security analysis – The domain expert can assign value of damage to the data files and tables.

The tool handles damages of data leak and data hack separately. The tool aggregates the

damage (that can be caused through them) to entry points of the application.

3https://en.wikipedia.org/wiki/Cyclomatic_complexity

4The rules of our calculation:

• Methods have a base complexity of 1

• +1 for every control flow statement (if, case, catch, do, while, for), and conditional expression

• +1 for every boolean operator (&&, ||) in the guard condition of a control flow statement

• For classes and modules the complexity is an aggregation of the methods below.

https://en.wikipedia.org/wiki/Cyclomatic_complexity

